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Abstract

Beam misalignments and bulk fuid velocities can influence the time history and intensity
of laser-induced thermal acoustics (LITA) signals. A closed-form analytic expression for LITA
signals incorporating these effects is derived, allowing the magnitude of beam misalignment and
velocity to be inferred from the signal shape. It is demonstrated how instantaneous, nonin-
trusive, and remote measurement of sound speed (temperature) and velocity (Mach number)
can be inferred simultaneously from homodyne-detected LITA signals. The effects of different
forms of beam misalignment are explored experimentally and compared with theory, with good
agreement, allowing the amount of misalignment to be measured from the LITA signal. This
capability could be used to correct experimental misalignments and account for the effects of

- misalignment in other LITA measurements. 1t it shown that small beam misalignments have no
influence on the accuracy or repeatability of sound speed measurements with LITA.
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1 Introduction

The four-wave mixing technique Laser-Induced Thermal Acoustics is used in various laboratories
to measure the sound speed and thermal diffusivity (e.g., Ref. [1]) as well as fluid velocities (e.g.,
Ref. [2], [3]). A grating-shaped pressure and temperature perturbation is created in a fluid by two
coherent intersecting pulsed laser beams. These perturbations evolve hydrodynamically in time and
space. This evolution can be examined by focusing a third continuous laser beam on the associated
density gratings at its Bragg angle. Depending on the modulation depth of the density grating, a
fraction of this source beam is coherently scattered into a weak signal beam. The induced acoustic
waves move outwards, modulating the density field and hence the signal at the grating Brillouin
frequency, or the frequency of sound waves with the grating wavelength. Hence, one approach to
measure the sound speed is to measure the frequency of the signal modulation. However, finite
-signal lifetime and sampling resolution limits the accuracy of this technique.

Another approach is to model the physics of the interactions that produce the LITA signal
and derive an analytic expression for the signal as a function of experimental parameters, fluid
properties including the sound speed and thermal diffusivity, and fluid velocity. A least-squares. fit
of this expression to experimental signals then provides best estimates of the signal parameters and
hence fluid properties. Cummings (Ref. [4]) derived such an expression that includes thermalization
and electrostriction as the two main mechanisms for the creation of the grating. However the
assumption was made that the system was in perfect optical alignment and that the fluid was at
rest. Obviously this approach breaks down when these assumptions are grossly violated. In these
cases, the theory is not a valid representation of the experiment and the fitting procedure returns
erroneous values.

The work presented here extends the earlier theory to include the effects of a convection velocity
and finite beam misalignment. These may then be measured through the least-squares fitting
procedure, simplifying LITA velocimetry. Present velocimetry techniques using LITA rely on the

measurement of a small Doppler shift of the signal beam using heterodyne detection. Now, only




from the recorded signal and using ¢he simpler homodyne detection, sound speed, velocities and
transport properties of the fluid can be extracted simultaneously. In addition we can extract beam
misalignment measurements from the signal and either realign the optics with this information or
take them into account in the data analysis.

In the first part of this paper, the LITA analysis of Ref. [4] is extended using nomenclature
mostly adapted from that derivation. First, the grating creation due to the opto-acoustic forcing
is modeled. The functional form of the electric field grating in the sample volume is derived. Next,
the fluid response to the electric field is examined. Since the underlying physics have not changed,
the fluid response to electric fields has been left unchanged from Ref. [4], only the results are given,
and the interested reader is referred to there and to Ref. [5]. Finally, the scattering of the source
beam into the signal beam is modeled using the linearized equation of light scattering.

In the second part, experimental results are presented that validate the theory.

2 Frame of Reference

We define our frame of reference so that the origin of our fixed Cartesian coordinate system is at
the focus of the source beam as shown in Fig. 1. The source beam lies in the z — y-plane and
forms an angle 9 with the z-axis. The z — z-plane bisects the two driver beams so that each one
intersects this plane at an angle . They intersect the z — y-plane at angles ¢; and ¢» (angular
misalignment). Their foci are at 7 and 75, respectively (spatial misalignment). We denote the

time of the short driver pulse as ¢ = 0.

3 Opto-Acoustic Forcing

We first model the electric field grating in the sample volume defined by the shallow-angle intersec-
tion of the two driver beams. Assume each driver laser beam has a Gaussian profile with Gaussian

half-width w and denote the normalized electric fields of the two driver lasers by Eg (7,t) and




Figure 1: Frame of reference for LITA analysis.
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E, is the total energy of the driver laser field, P;(t) is the normalized driver laser intensity history,
and I, is the normalized grating intensity distribution. Terms neglected in Eqn. 2 only contribute

a background intensity that will have no significant influence on the signal. The result for I is

I =—2—2 cos {2kg [—€ cos O + (y — 7) sin 6]}
W

xexp{—% o=t 5] - & - (- %)) - % [(z—z)2+<2]},

(3a)
where
w w
X = sin @ YzcosQ Z= w
E=(z1+12)/2 TA=(m+w)/2 (=(z+2)/2 (3b)
E=(z1—22)/2 n=(p1—w)/2 (=(21-2)/2

At this point we use the fact the the beam crossing angle is small and that hence the X > Y, Z.
Consequently, we neglect all variations in the x-direction including the misalignments. The side
effect of this assumption together with the assumption of no angular misalignments is that we
exclude any rotation of the grating, i.e. it is always perpendicular to the y-direction. The proper

limit of Eqn. 3a is then

Iy = ;f—;exp {—72; (-7 +7?] - % [(z —5)2 + 42} } cos {gy(y — )} (4)

with gy = 2kgsinf. Eqn. 4 represents a fringe pattern perpendicular to the y-direction with a
Gaussian intensity profile centered at (0,7, ().
At a later point we will have to take the 3-dimensional convolution of I; with the Green’s

functions of the fluid response to the electric field. This operation will be performed by multiplying
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H, for the opto-acoustic response of the fluid to thermalization and electrostriction respectively,

are
Hy(g,t) =Hgp1®p1 + Hopa®p2 + Hor®1 + Hop®p (6a)
He(q,t) =Hep1®p1 + Hep2®p2 + Her @7 (6b)
where
®p12(g,t) = exp {—I‘qzt +icsqt + tvtqy + iwtqz}
®r(q,t) = exp {—Dqut + ivtgy + iwtqz}
Bp(g,t) = exp {~(vs + o)t — Dsg’t + ivtqy + iwtg. | (6¢)
Hoor — M+iA-@1-GU-I] ..,
PLE O L (A-GR(1- G2+ P
o _ 1 I _ HQ
T = "1+ (A -Gl - Al oD = [(1 = GI)? + 117[1 — AIT]
=i A -G +iA-G)] _ _ (y=1HA
Hepr =1 2[1+(A-—G)2] _.HePQ Her = [1+(A—G)2}’ (6d)
and
T = ¢sq/ (79 + Yo + Dsd°)- (6e)

A is the thermal grating damping over a period of acoustic motion and T is the acoustic damping
rate (I' = 1/2[(y — 1)Dr + Dv]). Il is the ratio of the sound wave frequency with the wave vector
gy to the excited state energy decay rate. vy is the ratio of specific heats, Dy the thermal diffusivity,
Dy the longitudinal kinematic diffusivity of the fluid, and Dg the diffusivity of excited-state target
molecules. 7y is the rate of excited-state energy decay caused by thermalization while v 1 the
energy decay rate not due to thermalization.

®p; and ®py are associated with the acoustic waves traveling in opposite directions, @7 is

related to the density perturbations caused by the thermal grating, and ®p is due to the finite
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thermalization rate. A single-rate thermalization process is assumed. The density-time behavior is
then

(g, t '
p (g’ ) R I,Pye) o [HoUs + HLU:) g

where Uy and H, are the approximate modulation depths of the thermalization and the electrostric-

tion grating respectively. »

I4(Q) is peaked at ¢ = (0,qy,0). So, approximate to first order, ¢ = ¢y. This implies the
assumption of plane wave fronts which is a good approximation if the waves have not traveled too
far from their point of origin and if the fringe spacing is small. Also note that ¢, = O implies a
constant intensity in gy-direction when in fact, the intensity has a Gaussian profile in this direction.
But the error is only a multiplicative factor, since all grating cross sections perpendicular to ¢. are
self-similar.

Taking the inverse Fourier transform of the products

q)ggl’pg,T’D} = Id(q-')é{Pl,PQ,T,D}((TT t): 7 (8)

we obtain:

- 2 2 2
@g{z(r,t) =——exp {—-};3772 — —Z—2§2} exp {—I‘qit} cos {(y — (vEcs)t) gyt

Tw?
X exp —12 [y— 7+ (v=E cs)t))? — —2—5 [z - (E—l— wt) ? (9a)
Y VA
o (7, 1) =;L2§ exp {—3—,2—2772 - %42} exp { ~Drgjt | cos {(y — vt) gy}
xexp{—%[y—(ﬁ+(v+cs)t)]2——225[z— (Z+wt>]2} (9b)
B0 (7 6) =y exp |~ o = 756" | exp {=Dsait = (0 + vualt s {(y =) 00}
X exp {——?2-2— ly— @+ (v+ cs)t))% — —22—2 [z - (E—i— wt)f}. (9¢)

In Eqns. 9a-c, the assumption is made that the length scales do not change due to diffusion over

the LITA time scales. Also, a phase shift of 7jgy has been dropped in all three cosine terms.
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5 Acousto-Optical Scattering

After describing the creation and time evolution of the density grating in the sample volume, the
next step is to model how a continuous source beam focused at the origin and incident on the
grating at the phase-matched angle 9 scatters off the grating into the coherent signal beam.

If we assume the density variations p/ to be small, we can use the linearized equation of light
scattering (Ref. [8]). A narrow-band source beam Ey(7,t) cos (wot). scatters into the electric field

E, by a small disturbance in the susceptibility x(7,¢;w). In the far field:

.2

. k .o _
Es(R,1;q) = ~ 5 cos (ks - L = wot) (4, t). (10)

where k, is the wave vector of the scattered beam, wy is the frequency of the source beam, R is the

position vector relative to the scatterer, and p(q,t) is the Fourier transform of the overlap of the

susceptibility grating and the source laser field
(7, t) = x!(7, t;wo) Eo (7. £). (11)

Just as with the driver beams, assume the source beam to have spatially a Gaussian intensity

profile. Hence,

Eg=Ey+E} (12a)
= 1 U éo x 7|2

Ey = 5 €xXP {ikoég - 7 — iwot} exp < — - (12b)
&y = (cosp,sin,0). v (12¢)

Proceeding as before with the driver lasers, the electric field of the source laser is Es(7,t) =

Po (t)Ig ('F) COS (wot) with
2 2
Ioz,g.exp{_(%) () } (139

where ¢ is the Gaussian half-width of the source laser and

o
Oy = =
Y sing

0, =o0. (13b)
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In Eqns. 13a,b variations in x-direction have been neglected by assuming o, = o/siny > oy, 0,.
Define (I)gPl)PzTD}(T’t) = IU(F)(I)%LPZT,D}’ the field of the overlap of the source beam and the

evolving density grating. Taking the Fourier transform of these products, we can write

d,0 - -
@E(p'l),pg,T,T}(qa t) = NUpy por 1y (0 1) ¢ p1porry (1) (14a)
where
N= /2 3 o3 eXp{_Tznz" _2C2} (14b)
ow Y2+ 205 Z* + 202 Y Z
1 Y202 2, . 20'5 —
\I/P1,2=6XP{ 4W(Qy @) +1m(n (v )t )(Qy‘flu)
1 Z%2 202
Xexp{ 4m—22+ W(C-rwt)q
1 YQO’S 9 . 20;;> .
¥ = exp {—Zm (0y — qy)” + Zm @+ v1) (gy — qv)
1 Z%2 , . 20? — »
X exp {—quz + ’Lm (@ -‘.*'lUt) g: 0 =¥p (14C)
2(7+ (v £ ¢5)t)° 2 /s ,
— pa— 2 — s —_— ! ,
Xp12 =exp { Lgyt T 205 77+ 257 <§ + wr‘) +1qy (v £ c5)
2 _2(Crur)
2(7 +vt) rtut)
= — D2t — - + iguvt
Er=expy =Drayt = ooy ~ ey it
Sp = Dyg3t — (7o + vno)t — 27+ vi)” (EHUt)Q gt 14d
D =exp{ —Dsqyt — (6 + Tno Y1207 | 275207 + iqyv (14d)
In Eqn. 14c, the contributions from a similar lobe centered at g, = —¢y have been neglected. Using
this result in Eqn. 10 yields the electric field of the signal beam,
Es(q,R,t) _ K}’
Po(t) 4 R (wo) exp{ (A, R — wot)}Pd(f)
o R [4p1087 + 4p 85 + 47010 + Apal”], (15a)
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where we used

Ap12 =UpHpp12 + UeHep12 Ar =UgHgr + UcHer Ap =UpHyp. (15b)

6 Detected LITA Signal

The detected LITA signal using heterodyne detection is then simply the integral of Eqn. 15 over
the detection angle where the detector is centered at ¢ = (0, gy, 0). In the limit for a small detector,
Eqn. 15 multiplied by the detection angle is the LITA signal. In the experiments presented here,
homodyne detection is used. The detector measures the intensity of the electric field. i.e. the square

of the modulus of Eqn. 15.

Lrom 1170‘-‘)4

_ 2
P3(t) ~ 1672 cos® ¢ Ixwo)l

« (Ars00 + 4p:880 + ArofY 1 450129

x (Ap 087" + 45, 080" + Aralto” - Apol®) (16)

In Eqn. 16 we used the fact that the driver pulse (= 7 ns) is short compared to the inverse Brillouin
frequency and it was approximated by a Dirac delta function which eliminated the double temporal
convolution over the driver pulse time history.

In the large detector limit the integration over the detection angle can be approximated by

infinite integrals. The final result is then

£hom — kg
PZ(t) 4m?cos?y

x(en) P exp { - g5 - 25}

807 o) 2
X [exp{—m (%E) }[(P1+P2>(T*+D*)+(Pf+P~;)(T—:‘D)]

8 2
texpd ——8 ()2 S (PP} + PEP)
v2 (Y2 +202)

+ (PP} + PP} + TT* + TD* +T*D +DD*)} (17)
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where P, = Ap1Xp1, T* = A}YY, etc., and where the symbols Ap; po7,p and Xp1 po1,p are
defined in Eqn. 15b and Eqn. 14d, respectively.

In the absence of beam misalignments and fluid velocities, Eqn. 17 collapses to the solution
in Ref. [4] with the exception of a multiplicative constant. This difference is due to the fact that
variations in the z-direction were dropped much earlier than in Ref. [4].

In the absence of bulk fluid velocities, only the misalignment 7 changes the time history of the
LITA signal whereas 7, ¢, and ¢ simply decrease the signal intensity. Also, Eqn. 17 is symmetric
w.r.t. all possible misalignments. In the absence of beam misalignments, both fluid velocities have
a similar influence on the signal that resembles additional acoustic damping and thermal diffusion.
Among all misalignment and velocity components, 77 and v are the most interesting. in particular
by introducing a known 7 it is possible to measure the time it takes the density grating to travel to
the interrogation beam, thereby obtaining the velocity component v more precisely than by means
‘of an enhanced decay rate. Fig. 2 shows how intentionally misaligning the beans can produce a
dependence of the signal on velocity that is more orthogonal to other parameters and therefore more
accurately inferred from signals. Note that oscillations are still present in the signal so that the
sound speed can also be measured. Depending on the range of velocities to be measured, suitable

values for 77, w, and 6 can be chosen.

7 Experimental Setup

Figure 3 depicts a schematic diagram of the experimental setup. A Q-switched, frequency-doubled
Nd:YAG laser (Spectra Physics, GCR-150-10) drives a dye laser emitting ~ 10-mJ, 7-ns pulses
at 589 nm with a repetition rate of 10 Hz. Behind iris 2, beam splitter bs splits the beam in
approximately equal-intensity halves. Beam splitter bs and mirrors m3, m4, mb are placed to
match the path length of the two beams within ~ 1 mm. Lens /2 with focal length of 750 mm
focuses both beams onto the sample volume in the test section. Lens I2 and mirror m6 are mounted

on a translation stage with a 10-um-resolution micrometer drive. The test section is a high-pressure
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Figure 2: Theoretical LITA signals for atmospheric air from Eqn. 17 with 8 = 1.23°, w = 370 pm,

o = 700 pm, misalignment 7§ = —2w and with in fluid flow in y-direction with different Mach

numbers; a) M =0, b) M =0.25,¢) M =0.5,d) M =0.75,e) M =1.0, f) M = 1.5, g) M = 2.0,

h) M = 3.0.
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I translation test section P
+ stage

Figure 3: Schematic diagram of experimental LITA setup.

bomb with optical access via anti-reflective coated BK7 windows on opposite sides.

A CW Argon-ion laser (Spectra Physics, Model 165) at 488 nm provides 0.5 W for the source
beam. A chopper wheel ch (Scitech Instruments, Optical Chopper) blocks the beam except for
pulses of 1-ms duration which are synchronized (LabSmith LC880) with the Q-switch trigger of
the Nd:YAG laser. As with the driver laser, iris ¢1 partially removes unwanted beam modes, and
lens /1 (f=1 m) focuses the beam onto the sample volume. The beam passes just over mirror m6
which directs the driver beams into the test section. Note that this optical setup introduces a small
angular beam misalignment with ¢; = ¢2. Mirror m7 directs the scattered beam through iris ¢3
into the receiver unit where it is focused on and passed through pinhole ph with a diameter of 400
pm.

The signal beam is detected by a photomultiplier tube (Hammamatsu model OPTO-8) and
recorded on a digital storage oscilloscope (Tektronix, TDS 640A) from which it is transferred over

an IEEE 488 bus to a personal computer for data analysis. The transmitted part of the source
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(interrogation) beam is blocked as is one of the two driver beams exiting the test section. The other
is detected by photo detector PD (Thor Labs, DET-2SI) and used to trigger the data acquisition.

Each signal contains 2,000 data points taken at a sampling rate of 500 MS /s.

8 Procedure

For all experiments presented here, the test section was filled with atmospheric air seeded with
NO, at concentrations on the order of parts per million. The low level of seeding enhances the
signal level by typically two orders of magnitude Withovut changing the results of the measurements.
Also, this seeding makes thermalization predominant over electrostriction which can therefore be
ignored.

For the data analysis, a standard personal computer (Pentium, 150MHz) is used to find the
least-squares fit of a theoretical signal (Eqn. 17) to an experimental trace. To keep the number of
floating fitting parameters as low as possible, values for the beam diameters w and o, beam crossing
angle 6, etc. are obtained from a set of calibration measurements. A Levenberg-Marquart scheme
is used for the least-squares fit, which is a combination of the inverse Hessian (multidimensional
form of Newton’s method) scheme and the method of steepest descent (Ref. [9]). |

Eqn. 17" was validated by moving the translation stage with lens /2 and mirror m6 in the y-
direction, thus creating a known misalignment 7. The measurement started at a value of 7 = —2
mm and a trace was recorded every 10 ym until reaching 77 = +2 mm. Every trace was averaged
over 64 driver-laser shots to reduce the noise levels at larger misalignments.

For these measurements in which the correct beam misalignment was to be inferred from the
signal shape, only the misalignment component in question and Uy, the thermal grating modulation
depth, were adjusted during the numerical fit. The latter parameter had to be included to serve as
a multiplicative factor since Eqn. 17 cannot accurately give the absolute signal but rather a relative
time history whose total amplitude depends additionally on the characteristics of the detector and

other factors.
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In a second set of measurements, we wanted to find whether small beam misalignments affect the
repeatability and/or accuracy of LITA measurements. This was of particular interest since it did
not seem not possible to detect such misalignments by the fitting procedure. Hence, at a number of
fixed beam misalignments 7, 500 64-shot averages were obtained as data for a statistical analysis.
Here, only the sound speed, thermal diffusivity, and Uy where adjusted during the fitting procedure.
These data sets were analyzed three different ways: first, with all misalignments (wrongly) set
to zero, secondly with the misalignments held fixed at their correct values, and finally with the

misalignment 7 set as a fitting parameter during the data analysis.

9 Results, Discussion

Fig. 4 shows LITA signals recorded with various misalignments. For large values of 7 (Fig. 4a & b),
‘the only visible signal is due to an isolated acoustic wave passing through the source beam. We see
that the onset of the signal has a steeper slope than the tail, a result of acoustic damping. Beam
diameters can be inferred accurately from these traces. The width of the hump in the signal gives
a good measure of the driver beam width w. In the absence of acoustic damping, the deviation
of the exact shape of the signal from a Gaussian profile gives information about the source beam
diameter o. But, since I' is known in these experiments, this information can still be determined
using the least-squares fit to Eqn. 17.

In Fig. 4c we see the first oscillations in the signal. This indicates that at this location there is
a sizable overlap of the source beam with both the thermal grating and the acoustic waves. As 7
is decreased further, the hump moves to earlier times and the oscillations become stronger. Note
the subtle change in signal shape between Figs. 4e & f considering the large step in 7.

Fig. 5 shows an experimental LITA signal together with the result of the fitting procedure.
For clarity, they are plotted separately. We see how precise Eqn. 17 captures the features of a
misaligned signal.

Fig. 6 shows the beam misalignment inferred by the fitting routine vs. the actual misalignment
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Figure 4: LITA signals of atmospheric air, ¢ = 700 pm, w
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set by the translation stage. The dashed lines with a slope of =1 correspond to the ideal case. For
7 > 550 pm, the extracted values for 77 had the correct slope but were generally too large by about
200 pum. For very large values of 7, the larger scatter in the measurements is due to the increased
noise level in fhe signals. A linear regression for the region || > 600 um gives slopes in these
regions of m = ~.946 and m = 0.995, respectively, with a coefficient of deterlninat1011.,_r2, greater
than 0.98. The standard error for the measured 7 is 22 pm.

In the center region, the detected misalignment forms a plateau at 300 um. The reason for
this behavior is bprobably that the intensity profiles of the beams in the experiments are not well
represented by Gaussians. Fig. 7, which shows the peak signal intensity vs. 7, also provides evidence
that this assumption is not satisfied. If we give the fitting routine the option of an additional fitting
parameter whose effect on the signal depends strongly on the beam profiles, e.g., misalignment,
while not accurately modeling the beam profiles, it is unlikely that the fitting routine will return
‘the proper value of the parameter.

The dashed line in Fig. 7 represents the theoretical value of the (visible) peak intensity. The
intensities are normalized with the intensity at 77 = 0. First, consider the theoretical curve in which
we can distinguish three regimes.

For ] < 650 pm (regime I) we find a Gaussian behavior for the signal intensity w.r.t. 7. Here,
the peak value occurs early on in the LITA signal (Figs. 4e & f) due to constructive interference
of the thermal grating with the acoustic waves. Both gratings have a Gaussian profile so the peak
intensity scales the same way.

In regime IT (650 pm < || < 1300 pum) the peak intensity occurs at later times in the signal
when an isolated acoustic wave passes the interrogation beam (Figs. 4a & b). The travel time
of the wave scales linearly with the misalignment. The wave’s amplitude decreases exponentially
with the acoustic damping rate I'. This explains the linear behavior on a logarithmic plot for large
misalignments in Fig. 7. Figs. 4c & d mark the transition between these two regimes.

For 7] > 1300 um (regime III) the theoretical signal intensity decreases again faster than in

region II. This is an artifact of the limited duration of the data acquisition. In this regime, the
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tively. The experimental conditions are the as in Fig. 4.

same as in Fig. 4.

peak of the hump visible in Figs. 4a & b occurs after the end of the recording time.

The measured peak intensities are higher than predicted over a range of misalignments near
perfect alignment before they approach the theoretical values at larger 77. The most likely explana-
tion is the presence of laser modes other than TEMgy. We can see the transition from regime I to
regime II in Fig. 7. The transition to III is less pronounced as at this point signals are very weak.
We can see the effect of noise from the large amount of scatter in the intensities in Fig. 7.

As evidenced by Fig. 6 it was not possible to extract accurate measurements of small misalign-
ments from the signal shape. This finding prompts the question of whether small misalignments
have an impact on the accuracy and uncertainty of other LITA measurements. Figs. 8a & b re-
spectively show the uncertainty and the accuracy of LITA measurements of sound speed vs. 7 for
the three different fitting strategies.

All three fitting strategies yield almost identical results. For || < 300 pm the uncertainty
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Figure 8: Uncertainty and error of sound speed vs. 7. The sound speed for 7 = 0 is taken as

reference. Three different fitting strategies were used. In the strategy denoted by “float,” 77 is a

floating fitting parameter, in “fixed 0,” 7 is fixed at zero, and in “fixed corr,” 7 was held constant
g gp

at the correct preset value. The experimental conditions are the same as in Fig. 4.
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remains approximately constant at 0.1% as does the error of 0.2%, where the measured sound
speed from the data set with 77 = 0 has been taken as reference value. Only for 7] > 300 pm do
the uncertainty and error increase significantly.

Other types of misalignments that have been carried out experimentally include measurements
where only one driver beam was displaced in y-direction, thus inducing a simultaheous misalignment
in 7 and 7; moving both beams in opposite directions (only n) and measurements with misalign-

ments in the z-direction, i.e., sweeps through ¢ and ¢. Misalignments in the y-direction produced

similar results to those explained in detail above. For nonzero values of ¢ or ¢, no change in signal
shape has been observed as Eqn. 17 predicts.

When a small-diameter, 40 pm pinhole ph was used in the receiver unit, another form of
misalignment was observed that is not included in Eqn. 17. Changes in signal shape did not appear
to be symmetric w.I.t. 7. The most likely explanation for this asymetry is that part of the signal
beam was occluded by the pinhole. An illustration of this effect is shown in Fig. 9. In the upper
half we see the intensity of the overlap of the density grating with the source beam in physical space
along the y-axis as it develops over time. The bright and dark stripes correspond to the oscillations
in the early stages of the signal whereas the bright tail reflects the exponentially decaying tail of
the LITA signal.

In the large detector 1i1h'1t we assume that the detector integrates over the entire horizontal
range in Fig. 9 (and beyond). Imagine that half of the signal beam is blocked so the receiver sees
only the left or right half of the signal beam (receiver misalignment). The resulting LITA signals
are given in the lower half of Fig. 9. We see that for 77 = 0 this has no influence on the signal shape.
In fact, we could take any region along the y-axis and would end up with the same signal shape,
meaning that this kind of misalignment cannot be detected if the optics are otherwise perfectly
aligned.

However, if 77 # 0,then the time histories at different positions y are no longer self similar,
resulting in different signals depending on which part of the signal beam the detector sees.

Figure 10 provides evidence that detector misalignment produces asymimetry in beam-misalignment
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Figure 9: Intensity of overlap of density grating with source beam from the inverse Fourier Trans-
form of Eqn. 14 for atmospheric air and at z = 0, i.e, along the grating center line. On the top,
the time history as a function of y-position is plotted - on the left for perfect beam alignment, on
the right with 77 = w. The experimental parameters are: 0 = w = 500 pm, Ag = 589 nm, 8 = 0.8°.
White corresponds to high intensities, black to low intensities. In the lower portion, the resulting

LITA signals are shown if the receiver only detects the range y < 0 or only y >0, respectively.
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Figure 10: Two traces from a sweep through values of 77. Left trace: 77 = —650 pm; right trace:

7 = +650 um. A small pinhole ph with a diameter of only 40 um in the receiver unit blocked

portions of the signal beam. Compare with theoretical results in Fig. 9.

effects. Here, two traces taken at 7 = %650 ym are shown from earlier measurements with the
40 pm pinhole. We clearly see the difference in the signal shape. Compare Fig. 10 with the two
traces in the lower right of Fig. 9.

To fully verify the origin of the asymmetry, we performed a series of measurements using the 40-
pm pinhole in which, for several values of 7, the mirror m7 was translated to block different regions
of the signal beam. The influence of receiver misalignment on the signal shape was demonstrated,
but since this form of misalignment is not includéd in Fig. 17, no quantitative data can be given.
Subsequently, the use of a larger size pinhole eliminated the asymmetry at the cost of increased
sensitivity to incoherently scattered light and luminosity.

Finally, consider the case of angular beam misalignments and misalignments in the z-direction.
Both can produce a rotation of the principal axes of the grating structure. As a consequence, the
phase matching condition for the source beam may no longer be satisfied resulting in a weaker

signal beam that may even be scattered into a different direction than anticipated. This alone,
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however, does not change the shape of the signal as long as the entire signal beam falls on the

detector.

10 Conclusions

An analytical expression for the magnitude and time history of LITA signals from finite Gaussian
beams in the presence of fluid velocities and the most common forms of beam misalignment has
been derived. In experiments, some deviations from this expression were observed that were due
to non-Gaussian laser beam profiles. In regions where this assumption was satisfied however, the
experiments showed very good agreement with the theory.

It was demonstrated how beam misalignment can be detected quantitatively only from the

shape of the signal. Small misalignments that could not be accurately measured were shown not to

influence the accuracy or repeatability of sound speed measurements, even when the data analysis

incorrectly assumed that no misalignments were present during the measurement.
Controlled beam misalignments may be advantageous for optimizing the accuracy of measure-
ments of a particular parameter. For example, beam misalignments can improve the accuracy of

homodyne LITA velocimetry.
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